Crystal Structure of $Na_7Fe_4(AsO_4)_6$ and α - $Na_3Al_2(AsO_4)_3$, Two Sodium Ion Conductors Structurally Related to II- $Na_3Fe_2(AsO_4)_3$

C. Masquelier,* F. d'Yvoire,*,1 and G. Collint

*Laboratoire de Chimie des Solides, URA CNRS 446, Université Paris-Sud, 91405 Orsay Cédex, France; and †Laboratoire Léon Brillouin, CE Saclay, Bâtiment, 563, 91191 Gif sur Yvette Cédex, France

Received August 1, 1994; in revised form January 9, 1995; accepted January 10, 1995

In the system Na₂O-Fe₂O₃-FeO-As₂O₅, Na₇Fe₄(AsO₄)₆ is one of the end members of a large domain of nonstoichiometry, including the sodium ion conductor II-Na₃Fe₂(AsO₄)₃. It is rhombohedral, space group $R\overline{3}c$, with cell constants a = 13.807(1) and c =18.354(3) Å, and Z = 6. The structure is closely related to that of II-Na₃Fe₂(AsO₄)₃ and differs from it by a partial reduction of Felli into Fell, associated with an increase in sodium content for charge compensation; the reduction is localized on the Fe(1) site, and the Na(2) site is totally occupied, so that the structural formula can be written as Na(1)Na(2)₆Fe¹¹(1)Fe¹¹¹(2)₃(AsO₄)₆. Na₃ $Al_2(AsO_4)_3$ undergoes at 44°C a reversible phase transition $\alpha \rightleftharpoons$ β . The β form is rhombohedral and isotypic with II-Na₃ $Fe_2(AsO_4)_3$. The room-temperature form, α , differs from β by a slight monoclinic distortion: a = 14.551(2), b = 13.303(1), c =9.782(1) Å, $\beta = 96.88(1)^{\circ}$, space group C2, and Z = 8. The sodium ions exhibit a long-range ordering: among the six available sodium sites derived from the Na(2) site of the β form, five are totally occupied and one is vacant. A comparison with the structure of II-Na₃Fe₂(AsO₄)₃ reveals some important displacements of Na positions toward the vacancy $\square(26)$, which probably result in a minimization of electrostatic repulsions. A close examination of the framework distortions indicates that the loss of symmetry $(\beta,$ rhombohedral $\rightarrow \alpha$, monoclinic) could be associated with a loss of the three-dimensional character of the conduction. © 1995 Academic Press, Inc.

INTRODUCTION

The arsenates $Na_3M_2(AsO_4)_3$ (M = AI, Ga, Cr, Fe) (1, 2) do not have the Nasicon structure which is adopted by the corresponding phosphates $Na_3M_2(PO_4)_3$ (M = Cr, Fe) (3-5). They exhibit two structural modifications and, for $Na_3Fe_2(AsO_4)_3$, the ionic conductivity of the high-temperature form (II, rhombohedral) was found to be three orders of magnitude higher than that of the low-temperature form (I, garnet-type).

The crystal structure of II-Na₃Fe₂(AsO₄)₃ (6) consists of a three-dimensional framework $[Fe_4(AsO_4)_6]_{\infty}$ into

which the sodium ions are inserted. The Na⁺ ions are distributed over two sites: Na(1) and Na(2). Na(2) is partially occupied (occupancy factor $\tau = 5/6$) and the structural formula is: Na(1)Na(2)₅ \Box Fe(1)Fe(2)₃(AsO₄)₆.

Depending on the conditions of preparation, "nonstoichiometric" crystals can be obtained, which result from partial substitution of Na⁺ and/or Fe²⁺ for Fe³⁺. The compound Na₇Fe₄(AsO₄)₆ (i.e., Na₇Fe¹ Fe¹ Fe¹ (AsO₄)₆) is one of the end-members of the nonstoichiometric domain.

At 44° C Na₃Al₂(AsO₄)₃ undergoes a reversible phase transition $\alpha \rightleftharpoons \beta$, which was evidenced by DTA, conductivity measurements (Fig. 1), and X-ray powder diffraction. The high-temperature form β is rhombohedral, isotypic with II-Na₃Fe₂(AsO₄)₃. The room-temperature form α differs from β by a slight monoclinic distortion, which was assumed to be associated with a long-range ordering of the sodium ions (2).

In the present paper we report the crystal structures of $Na_7Fe_4(AsO_4)_6$ and α - $Na_3Al_2(AsO_4)_3$. This work was undertaken in order to confirm and specify

- (i) the mechanism of the nonstoichiometry observed in II-Na₃Fe₂(AsO₄)₃;
- (ii) the long-range ordering of the Na⁺ ions in α -Na₃ Al₂(AsO₄)₃. The positions of the sodium sites are examined as well as the atomic displacements associated with the distortion of the framework; then, models of conduction paths are discussed.

EXPERIMENTAL

Synthesis and Characterization

Crystals of II-Na₇Fe₄(AsO₄)₆ were grown in a flux of sodium arsenate from the starting mixture 13 Fe₂O₃ + 21 Na₄As₂O₇ + 24 NaH₂AsO₄ · H₂O. After a progressive heating to 840°C, the mixture was melted at 1025°C, cooled to 500°C at a rate of 5°C · min⁻¹ and then to room temperature (15°C · min⁻¹), with the melting and cooling operations being carried out in a flow of N₂. The crystals

¹ To whom correspondence should be addressed.

FIG. 1. Temperature dependence of the conductivity (σ) of II-Na₃ Fe₂(AsO₄)₃ and Na₃Al₂(AsO₄)₃ (2).

obtained after washing in water are darkish. Microscopic observations reveal them to be uniaxial negative and pleochroïc: brown yellowish along \mathbf{c} , dark gray perpendicular to \mathbf{c} . Chemical analyses led to Fe^{II} and (Fe^{II} + Fe^{III}) contents of 4.34 and 14.04%, respectively, corresponding to the formula Na_{6.95}Fe^{III}_{0.95}Fe^{III}_{3.05}(AsO₄)₆. The selected crystal had an irregular shape and was elongated approximately along [721].

Crystals of Na₃Al₂(AsO₄)₃ were also obtained by flux techniques. The starting mixture 2Al(OH)₃ + Na₄As₂ O₇ + 4NaH₂AsO₄ · H₂O was progressively heated and melted up to 765°C, cooled to 670°C at a rate of 2°C · min⁻¹, and then quenched. The resulting solid was mainly vitreous, but some crystals could be isolated after a prolonged immersion in water. Preliminary X-ray diffraction investigations by means of the Weissenberg and precession methods indicated that the selected crystal was slightly twinned with one or two secondary domains in which the twofold axis was oriented from that of the main domain by a 120° rotation about the threefold pseudorotation axis. The crystal was elongated on [010] and delimited by {111} and {100}.

X-ray powder diffractograms of $Na_7Fe_4(AsO_4)_6$, β - $Na_3Al_2(AsO_4)_3$, and α - $Na_3Al_2(AsO_4)_3$ are presented in Table 1; d values have been corrected using $Al_4(P_4O_{12})_3$ as an internal standard (7). The cell parameters refined from the diffractograms are reported in the Abstract. They differ slightly from the values calculated from single crystal measurements (Table 2), especially in the case of α - $Na_3Al_2(AsO_4)_3$.

Structure Determination

Intensities were collected on an automatic four-circle diffractometer, using $MoK\alpha$ radiation. Crystal data and experimental conditions for intensity measurements and refinements are reported in Table 2. Atomic scattering factors and anomalous dispersion corrections were taken from (11). The programs used have been developed locally from classical ones.

(a) $Na_7Fe_4(AsO_4)_6$. The structure of the isotypic compound II-Na₃Fe₂(AsO₄)₃ was used as a starting model. Atomic coordinates and anisotropic thermal motion coefficients were refined in the space group $R\overline{3}c$. Anharmonic corrections were applied to As and Na by using doubly contracted (instead of third- and fourth-rank) tensors. The occupancy factors, τ , of the Na(2) and Fe(2) sites were refined and found to be very close to 1 (then fixed at 1 for Fe(2)). The final R values are R = 4.87% and $R_w = 5.75\%$. Final atomic parameters are listed in Table 3. Selected interatomic distances and angles are given in Table 4.²

(b) α -Na₃Al₂(AsO₄)₃. Weissenberg and precession photographs indicate the presence of weak reflections h0l with l=2n+1. (Particularly worth noting is the fact that reflections $\overline{2l0l}$ with l=2n+1 are clearly observed: they are equivalent to reflections 00.3l in the pseudohexagonal cell and their presence on the photographs cannot be interpreted as a consequence of the twinning.) Then the unique reflection condition is hkl: h+k=2n. Of the three possible space groups C2, Cm, and C2/m, only C2 is a subgroup of $R\overline{3}c$, the space group of the β form.

The atomic coordinates (x_h, y_h, z_h) of II-Na₃Fe₂(AsO₄)₃ (rhombohedral, hexagonal unit-cell) were transformed into (x_m, y_m, z_m) (monoclinic description) according to the relationships indicated in Fig. 2.

In the first stage, refinements were performed in the space group C2/c as an intermediate fictitious solution. Thus, any site A(n) in general position in the space group $R\overline{3}c$ was split into three independent sites, A(n1), A(n2), and A(n3), in the space group C2/c (Table 5). The occupancy factors, τ , of the Na(21), Na(22), and Na(23) sites were refined and found to be equal to 1, 1, and 0.5, respectively.

Then the structure was solved in the space group C2, which differs from C2/c by the loss of the inversion center. Any site A(np) (p = 1, 2, or 3) in general position in C2/c generates two sites: A(np) and A(n(p + 3)). The Na(23) site was found to be totally occupied in C2 while the Na(26) site was vacant. At this step, refinements led to an R value of 9.8%. A significant improvement occurred

² Lists of structure factors and anisotropic thermal motion parameters are available upon request from the authors.

TABLE 1
X-Ray Powder Diffraction Data^a

	Na ₇ F	e ₄ (AsO ₄))6		α-Ν	la ₃ Al ₂ (As	O ₄) ₃	
Ic	d _{obs} /Å	d _{cal} /Å	h k. <i>l</i>	I _c	d _{obs} /Å	d _{cal} /Å	h k <i>l</i>	h'k'. <i>l'</i>
55	7.282	7.280	0 1.2	42	7.224	7.223	200 7	
2	6.910	6.903	1 1.0	67	7.190	7.191	111	01.2
28	4.576	4.579	1 1.3	7		⊢ 6.651	~ ~ ~	110
15	4.388	4.388	2 1.1	, ,	6.636	└ 6.630	111]	1 1 .0
1	4.283	4.284	1 0.4	37	4.525	⊢ 4.528	3107	
9	4.055	4.054	1 2.2	1		L 4.520	-2 2 1 -1 1 2	11.3
3	3.984	3.986	3 0.0	14	4.498	4.497	-112	
1	3.641	3.640	0 2.4	18	4.293	4.293	-3 1 1 7	10.4
26	3.451	3.452	2 2.0	6		4.274	-202	
5	3.263	3.263	13.1	100	4.236	L 4.239 4.234	1307	211
22 5	3.220 3.118	3.220 3.119	2 1.4 3 1.2	40	4.216		221	2 1 .1
4	3.059	3.119	0 0.6			4.216 $\begin{bmatrix} 3.937 \\ 3.936 \end{bmatrix}$	3117	
23	3.006	3.006	2 2.3	24	3.937	2 036	-131	1 2 .2
100	2.8493	2.8493	1 2.5	11	3.922	3.922	022	1 2 .2
5	2.8430	2.8423	0 4.2	13	3.836	3.836	131 -	
15	2.7130	2.7130	3 2.1	4	3,826	3.823	131	3 0 .0
10	2.6885	2.6878	13.4	1	-,	3.612	400 7	00.4
45	2.6093	2.6093	4 1.0	3	3.597	3.596	-222	02.4
1	2.5040	2.5047	4 0.4	25	3.3256	3.3257	040 222	2 2 .0
17	2.4610	2.4608	3 1.5	52	3.3154	3.3148		22.0
				52	3.1731	┌ 3.1739	4207	
β-1	Na ₃ Al ₂ (A	$(sO_4)_3$ (50°C)	}		L 3.1708	-331 -113	21.4
	_	_		42	3.1492	$\begin{bmatrix} 3.1506 \\ 3.1464 \end{bmatrix}$	041 ¬	
Ιe	d _{obs} /Å	d _{cal} /Å	h k. <i>l</i>	Ì		- 3.1398	312	13.1
40	7.205	7.200	0 1.2	27	3,1403	L 3.1392	132	1 3 .1
3	6.643	6.640	1 1.0	40	3.0801	3.0799	-402	00.6
20	4.514	4.514	1 1.3]		⊏ 3.0209	240 ¬	
8	4.284	4.284	1 0.4	5	3.0205	└ 3.0191	331	31.2
45	4.233	4.232	2 1.1	4	3.0016	3.0016	113 -	
10	3.933	3.933	1 2.2	35	2,9264	r 2.9272	4217	
6	3.834	3.834	3 0.0			L 2.9265	-2 4 1	22.3
2	3.600	3.600	02.4	21	2.9108	2.9108	023 -	
30	3.321	3.320	2 2.0	93	2.8237	2.8234	5107	
25	3,165	3.165	2 1.4	91	2.8160	2.8155	-332	12.5
15	3.144	3.143	1 3.1	86	2.8070	2.8066	-223]	
15 4	3.078 3.015	3.078 3.015	0 0.6	8 5	2.6293	2,6299	5117	13.4
20	2,9220	2.9223	3 1.2 2 2.3		2.6244	2.6247 - 2.6176	$\begin{bmatrix} -2 & 4 & 2 \\ -1 & 3 & 3 \end{bmatrix}$	13.4
100	2.8153	2.8147	1 2.5	21	2.6172	2.6166	150 7	
8	2.6243	2.6244	1 3.4	11	2.6113	2.6114	332	3 2 .1
12	2.6118	2.6121	3 2.1	13	2.6044		223	J L . 1
20	2.5101	2.5099	4 1.0	25	2.5125	2,5128	151 7	
4	2,4405	2.4407	4 0.4	26	2.5085	2.5093	242	41.0
10	2.4143	2.4142	3 1.5	25	2,5034	2.5034	313	
				ــــــــــــــــــــــــــــــــــــــ				

^a Guinier camera, $CoK\alpha_1$ radiation. The intensities listed are either estimated visually (I_c) or calculated from single crystal data (I_c) . For α -Na₃Al₂(AsO₄)₃, h, k, l and h', k', l' are the indices expressed with respect to the monoclinic and the pseudohexagonal cell, respectively. For β -Na₃Al₂(AsO₄)₃, $a_h = 13.281(2)$ Å and $c_h = 18.467(3)$ Å (2).

when taking into account the slight twinning mentioned above. The relative proportions of the three twin components were refined and found to be equal to 88, 7, and 5%. Anisotropic thermal motion factors were refined for the Na and As sites only. For the oxygen sites, the temperature factors B(A(np)) and B(A(n(p + 3))) were constrained to be equal. The final R values are R = 4.13% and $R_w = 4.71\%$. Final atomic parameters are listed in

Table 6. Selected interatomic distances and angles are given in Tables 7 and 8.2

STRUCTURE OF II-Na₃Fe₂(AsO₄)₃

The main features of the crystal structure of II-Na₃ Fe₂(AsO₄)₃ (6) are reported here and will serve as a reference for the following descriptions.

TABLE 2
Crystal Data and Experimental Conditions for Crystallographic Analysis of
$Na_7Fe_4(AsO_4)_6$ and α - $Na_3Al_2(AsO_4)_3$

	Na ₇ Fe ₄ (AsO ₄) ₆	α -Na ₃ Al ₂ (AsO ₄) ₃
Crystal data		
Crystal system	Rhombohedral	Monoclinic
Space group	$R\overline{3}c$	C2
a (Å)	13.794(4)	14.576(6)
b (Å)	13.794(4)	13.409(6)
c (Å)	18.360(6)	9.728(5)
β (°)	90	96.95(4)
γ (°)	120	90
$V(\mathring{\mathbf{A}}^3)$	3025(2)	1887(2)
\boldsymbol{z}	6	8
Formula mass (amu)	1217.8	539.7
Crystal size (mm)	$0.3 \times 0.15 \times 0.10$	$0.19 \times 0.16 \times 0.04$
$Dx (g \cdot cm^{-3})$	4.01	3.80
$\mu(\text{Mo}K\alpha) \text{ (mm}^{-1})$	12.84	10.92
Intensity measurements		
Monochromator	Gra	phite
$\lambda(\mathbf{Mo}K\alpha)$ (Å)	0.7	107
$T(\mathbf{K})$	2	94
Scan mode	θ -	- 2 <i>0</i>
θ Range (°)	2 -	32.5
Refinements		
Number of reflections collected	1450	3696
Number of unique reflections	$881 \ (I \ge 1\sigma(I))$	$2688 \ (I \ge 3\sigma(I))$
Absorption corrections		om crystal shape
Refinement method	Full-matrix le	ast-squares on F
Weighting scheme	un	itary
Agreement factors	R = 0.049	R = 0.041
	$R_{\rm w}=0.057$	$R_{\rm w}=0.047$

The space group is $R\overline{3}c$. A three-dimensional framework $[Fe_4(AsO_4)_6]_{\infty}$, made up of Fe_4O_{18} clusters linked to AsO_4 tetrahedra (Fig. 3), delimits an interstitial space within which the Na^+ ions are distributed.

Each Fe₄O₁₈ cluster is built up of a central octahedron Fe(1)O₆ sharing three edges with Fe(2)O₆ octahedra. This arrangement probably results in some constraints around the Fe(1) site, since the Fe(1)-O(3) distance (1.987(5) Å) is significantly lower than the mean Fe(2)-O distance (2.016 Å).

Each tetrahedron shares two oxygens, O(1) and O(3), with one cluster and one oxygen, O(2), with another cluster. The fourth oxygen, O(4), belongs to the tetrahedron only and lies in the environment of the sodium ions. The As-O(4) distance is the shortest one (1.634(6) Å) and O(4) displays a high equivalent isotropic temperature factor $(1.8(2) \text{ Å}^2)$.

The sodium ions are distributed over two sites and are partially disordered: Na(1) is fully occupied and octahedrally surrounded ($\overline{3}$ symmetry) by the oxygen O(4) with a Na-O distance of 2.375(6) Å. Na(2) is partially occupied ($\tau = 5/6$) and has an irregular environment of nine oxygen

atoms, with Na-O distances ranging from 2.29 to 3.12 Å. The Na(1) site is surrounded by a sextuplet of Na(2) equivalent positions. Each Na(2) position has two neighboring Na(2) positions belonging to the same sextuplet and one neighboring Na(2) position belonging to another

TABLE 3
Occupancy Factors, Atomic Coordinates, and Isotropic
Temperature Factors of II-Na₇Fe₄(AsO₄)₆

Atom	Occupancy	x	у	z	$B_{eq} (A^2)^a$
Na(1)	1	0	0	0	1.31(22)
Na(2)	0.98(2)	0.7915(4)	0.0166(4)	0.0537(2)	1.74(15)
Fe(1)	1	0	0	1/4	0.59(7)
Fe(2)	1	0.7804(1)	0	1/4	0.47(6)
As	1	0.18456(6)	-0.01130(6)	0.14550(5)	0.56(2)
O(1)	1	0.5279(5)	0.0620(5)	0.1472(3)	0.97(18)
O(2)	1	0.7130(5)	0.0545(5)	0.1781(3)	1.00(19)
O(3)	1	0.5924(5)	0.1874(5)	0.0210(3)	0.88(17)
O(4)	1	0.0251(6)	0.1644(6)	0.0608(3)	1.14(19)

 $^{^{}a}B_{eq} = (8/3)\pi^{2}\sum_{i}\sum_{i}U_{ij}a_{i}^{*}a_{i}^{*}\mathbf{a}_{i}\cdot\mathbf{a}_{i}.$

TABLE 4
Selected Interatomic Distances (Å) and Angles (°) in Na ₂ Fe ₄ (AsO ₄)

			AsO ₄ tetrahed	ron ^a		
	As	O(1)	O(2)	O(3)	O(4)	
	O(1)	1.704(6)	2.668(9)	2.851(9	2.761(9)	
	O(2)	$10\overline{3.3(3)}$	1.698(7)	2.751(9	2.833(9)	
	O(3)	113.5(3)	107.9(3)	1.704(6	2.681(9)	
	O(4)	110.7(3)	115.5(3)	106.0(3)	1.651(7)	
			Fe(1)O ₆ octahe	dron		
	Fe(1)	$-O(3) \times 6 2.0$	86(6) O(3)	-Fe(1)-O(3')	×3 86.52(35)	
	O(3)-	\cdot O(3') \times 1 2.8	6(1) O(3)	-Fe(1)-O(3'')	×3 87.96(37)	
	O(3)-	$O(3'') \times 1 = 2.9$	O(1) O(3)	-Fe(1)-O(3'")	×6 92.76(25)	
	O(3)-	$-O(3''') \times 1 - 3.0$	2(1) O(3)	-Fe(1)-O(3"")	×3 179.01(35)	
	O(3)-	\cdot O(3"") ×1 4.1	7(1)			
			Fe(2)O ₆ octahed	dron ^a		
Fe(2)	O(2)	O(2)	O(1)	O(1)	O(3)	O(3)
O(2)	1.967(7)	2.94(1)	3.057(9)	2.699(9) 2.829(9)	4.03(1)
O(2)	96.8(4)	1.967(7)	1.980(6)	3.94(1	2.758(8)	2.769(9)
O(1)	101.5(3)	86.3(3)	1.980(6)	3.94(1	2.758(8)	2.769(9)
O(1)	86.3(3)	101.5(3)	168.4(4)	1.980(6) 2.769(9)	2.758(8)
O(3)	88.7(3)	170.9(3)	85.6(3)	86.0(3)	2.079(6)	2.86(1)
O(3)	170.9(3)	88.7(3)	86.0(3)	85.6(3)	86.9(4)	2.079(6)
			NaO, polyhe	dra		
		$Na(1)-O(4) \times 6$	2.392(7)	$Na(2)-O(2) \times 1$	2.688(8)	
]	$Na(2)-O(4) \times 1$	2.827(9)	
		$Na(2)-O(4) \times 1$	2.288(8)	$Na(2)-O(1) \times 1$	3.019(8)	
		$Na(2)-O(4) \times 1$	2.514(9)	$Na(2)-O(1) \times 1$	3.071(8)	
		$Na(2)-O(1) \times 1$	2.529(8)	$Na(2)-O(3) \times 1$	2.940(8)	
		$Na(2)-O(2) \times 1$	2.597(8)			

[&]quot; As-O and Fe-O distances are underlined. The O-O distances are given above the diagonal, the O-As-O and O-Fe-O angles are given below.

sextuplet. After a close examination of the radius of the oxygen windows (i.e., the distance from the center of the window to the oxygen atoms lying at the corners) which separate neighboring sodium sites, d'Yvoire *et al.* (6) suggested two models of conduction paths (Fig. 3):

(a)
$$\cdots$$
Na(2)]-[Na(2) \cdots Na(1) \cdots Na(2)]-[Na(2) \cdots Na(1) \cdots

(b)
$$\cdots$$
Na(2)]-[Na(2) \cdots Na(2)]-[Na(2) \cdots

(The square brackets enclose Na positions belonging to, or centered inside, the same sextuplet.) These models have in common the \cdots Na(2)]-[Na(2) \cdots sequence, in which the Na(2) positions belong to different sextuplets and are separated by a wide quasirectangular window with R = 2.38 Å. In contrast, two neighboring Na positions Na(2) \cdots Na(2) belonging to the same sextuplet as well as Na(2) \cdots Na(1), are separated by narrow windows with R = 1.89 and R = 1.91 Å, respectively.

The high value of the temperature factor on the Na(2) site $(B_{eq} = 3.98(26) \text{ Å}^2)$ is in favor of the *b*-model but ion-exchange experiments, which lead to a quasi-total substitution of Ag⁺ or Li⁺ for Na⁺, suggest that Na(1)

might also be involved in the conduction process (a-model).

STRUCTURE OF Na₇Fe₄(AsO₄)₆

The structure, described in the space group $R\overline{3}c$, is very similar to that of II-Na₃Fe₂(AsO₄)₃ (called stoichiometric) but differs from it by three main specific features:

- —The occupancy factor of the Na(2) site is very close to $1 (\tau = 0.98(2))$ while it is equal to 5/6 in the stoichiometric crystal. The quasitotal occupancy of the Na(2) site is accompanied by a significant decrease in the average Na(2)-O distance: 2.719 Å against 2.745 Å.
- —The average Fe(2)—O distance (2.009 Å) is virtually the same as in the stoichiometric compound (2.016 Å) and can be considered as characteristic of iron in the oxidation state +3. The Fe(1) site is fully occupied in both compounds but the Fe(1)—O(3) distance is much longer in Na₇Fe₄(AsO₄)₆ (2.086(6) Å) than in II-Na₃Fe₂(AsO₄)₃ (1.987(5) Å). This difference of 0.10 Å suggests that, in Na₇Fe₄(AsO₄)₆, the Fe(1) site is occupied by iron in the oxidation state +2. Similar observations were reported

FIG. 2. Geometrical relationships between the hexagonal unit cell $(\mathbf{a_h}, \mathbf{b_h}, \mathbf{c_h})$ (space group $R\overline{3}c$) and the monoclinic unit cell $(\mathbf{a_m}, \mathbf{b_m}, \mathbf{c_m})$ of $Na_3Al_2(AsO_4)_3$:

$$\mathbf{a}_{m} = \mathbf{a}_{h}/3 - \mathbf{b}_{h}/3 + 2\mathbf{c}_{h}/3, \quad \mathbf{b}_{m} = -\mathbf{a}_{h} + \mathbf{b}_{h}, \quad \mathbf{c}_{m} = \mathbf{a}_{h}/3 - \mathbf{b}_{h}/3 - \mathbf{c}_{h}/3$$

Left, projection along $[010]_h$. Lattice points at $z_h = 0$, 1/3, and 2/3 are represented by full circles, full triangles, and open triangles, respectively. Right, projection along $[010]_m$. The space group considered here is C2/c, which corresponds to an intermediate fictitious solution. The atomic coordinates x_h , y_h , z_h of II-Na₃Fe₂(AsO₄)₃ (rhombohedral) were transformed into x_m , y_m , z_m (monoclinic) according to the following relationships: $x_m = (x_h - y_h)/2 + z_h - 1/4$, $y_m = -(x_h + y_h)/2 - 1/4$, and $z_m = x_h - y_h - z_h$. In order to be consistent with the description of the "International Tables of Crystallography," the origin was shifted by $(\mathbf{a_m} + \mathbf{b_m})/4$. For the description in the C2 space group, it must be translated again by $\mathbf{c_m}/4$.

TABLE 5 Differentiation of the Na and Al Sites in the Space Groups $R\overline{3}c$, C2/c, and C2

	Rhomb	2(AsO ₄) ₃ ohedral 3 <i>c</i> = 12					$a_3Al_2(AsO_4)_3$ Monoclinic $C2$ $Z = 8$			
Site	Position	Symmetry	τ	Site	Position	Symmetry	τ	Site	Position	τ
Na(1)	6 <i>b</i>	3	1	Na(1)	4 <i>c</i>	1	1	Na(1)	4c	1
				Na(21)	8 <i>f</i>	1	1	Na(21) Na(24)	4 <i>c</i> 4 <i>c</i>	1 1
Na(2)	36 <i>f</i>	1	5/6	Na(22)	8 <i>f</i>	1	1	Na(22) Na(25)	4 <i>c</i> 4 <i>c</i>	1 1
				Na(23)	8 <i>f</i>	1	0.5	Na(23) Na(26)	4 <i>c</i> 4 <i>c</i>	1 0
Al(1)	6 <i>a</i>	32	1	Al(1)	4 <i>e</i>	2	1	Al(11) Al(14)	2 <i>b</i> 2 <i>a</i>	1 1
				Al(21)	4 <i>e</i>	2	1	Al(21) Al(24)	2 <i>b</i> 2 <i>a</i>	1
Al(2)	18 <i>e</i>	2	1	Al(22)	8 f	1	į	Al(22) Al(25)	4 <i>c</i> 4 <i>c</i>	1

TABLE 6
Atomic Coordinates and Isotropic Temperature Factors of α-Na₃Al₂(AsO₄)₃

Atom	x	у	z	$B(\mathring{A}^2)^a$
 Na(1)	0.2512(5)	0.751(1)	0.2378(8)	1.44(22)
Na(21)	0.1844(5)	0.544(1)	0.2673(7)	1.26(24)
Na(24)	0.7984(5)	0.499(1)	0.173(1)	2.39(26)
Na(22)	0.0998(6)	0.862(1)	0.075(1)	1.92(40)
Na(25)	0.9002(6)	0.132(1)	0.4092(9)	1.19(31)
Na(23)	0.8132(5)	0.359(1)	0.5166(8)	1.96(30)
Al(11)	0	0.750(1)	1/2	0.56(4)
Al(14)	0	0.250(1)	0	0.56(4)
Al(21)	0	0.529(1)	1/2	0.82(14)
Al(24)	0	0.469(1)	0	0.53(12)
Al(22)	0.3877(4)	0.357(1)	0.2805(6)	0.60(8)
Al(25)	0.6095(4)	0.638(1)	0.2229(6)	0.58(9)
As(11)	0.1938(1)	0.644(1)	0.5741(2)	0.60(6)
As(14)	0.8082(1)	0.348(1)	-0.0827(2)	0.57(6)
As(12)	0.4994(1)	0.162(1)	0.1990(2)	0.53(7)
As(15)	0.4933(1)	0.832(1)	0.2974(2)	0.58(7)
As(13)	0.1069(1)	0.934(1)	0.4053(2)	0.65(7)
As(16)	0.8923(1)	0.058(1)	0.0909(2)	0.53(6)
O(11)	0.1282(9)	0.542(2)	0.570(1)	0.76(9)
O(14)	0.8782(9)	0.451(2)	-0.087(1)	0.76(9)
O(12)	0.4156(9)	0.251(2)	0.169(1)	0.84(8)
O(15)	0.5762(9)	0.746(2)	0.336(1)	0.84(8)
O(13)	0.1302(9)	0.949(2)	0.577(1)	0.68(8)
O(16)	0.8728(9)	0.042(2)	-0.084(1)	0.68(8)
O(21)	0.0384(9)	0.435(2)	0.374(1)	0.71(9)
O(24)	0.9599(9)	0.551(2)	0.130(1)	0.71(9)
O(22)	0.9277(9)	0.946(2)	0.153(1)	0.72(9)
O(25)	0.0675(9)	0.050(2)	0.354(1)	0.72(9)
O(23)	0.7406(9)	0.360(2)	0.765(1)	0.84(9)
O(26)	0.2666(9)	0.640(2)	-0.280(1)	0.84(9)
O(31)	0.0221(9)	0.643(2)	0.378(1)	0.73(7)
O(34)	0.9760(9)	0.351(2)	0.119(1)	0.73(7)
O(32)	0.0187(9)	0.848(2)	0.369(1)	0.67(8)
O(35)	0.9814(9)	0.145(2)	0.126(1)	0.67(8)
O(33)	0.625(1)	0.249(2)	0.576(1)	0.60(8)
O(36)	0.376(1)	0.740(2)	-0.083(1)	0.60(8)
O(41)	0.2488(8)	0.655(2)	0.438(1)	0.91(10)
O(44)	0.7535(8)	0.356(2)	0.055(1)	0.91(10)
O(42)	0.601(1)	0.195(2)	0.152(1)	1.02(9)
O(45)	0.397(1)	0.796(2)	0.352(1)	1.02(9)
O(43)	0.196(1)	0.899(2)	0.326(1)	0.99(9)
O(46)	0.807(1)	0.101(2)	0.165(1)	0.99(9)

^a Na and As atoms anisotropically refined: $B_{eq} = (8/3)\pi^2 \sum_i \sum_j U_{ii} a_i^* a_i^* a_i a_j$.

for mixed-valence Fe^{II}-Fe^{III} compounds (8, 9). The structural formula of the studied crystal can be written Na(1) Na(2)₆Fe^{II}(1)Fe^{III}(2)₃(AsO₄)₆ and the mechanism previously proposed (6) to account for the nonstoichiometry phenomenon is confirmed: a substitution of Fe²⁺ and/or Na⁺ for Fe³⁺ occurs in the Fe(1) site and is compensated for by a higher occupancy of the Na(2) site for charge balance.

—The thermal motion factors are significantly lower in the nonstoichiometric crystal, especially on the Na(2) site. This suggests a decrease in ionic transport properties associated with the decrease of the vacancy/Na ratio within the interstitial space.

A confirmation of this point would require good conductivity measurements on single crystals or dense ceramic samples of appropriate size. As yet such samples have not been elaborated. Moreover, besides the ionic conduction, an electronic one could be induced by the presence of mixed valence Fe^{III}-Fe^{II} in the material.

STRUCTURE OF α-Na₃Al₂(AsO₄)₃

The structure of α -Na₃Al₂(AsO₄)₃, described in the space group C2, is characterized by a long-range ordering of the Na⁺ ions. The phase transition between the high-temperature form β (isotypic with II-Na₃Fe₂(AsO₄)₃) and the α form adopted below 44°C is accompanied by a small monoclinic distortion, without any breaking or creating of interatomic bonds in the framework.

Sodium ion distribution. The arrangement of the sodium sites in α -Na₃Al₂(AsO₄)₃ is shown in Fig. 4, which clearly illustrates the loss of rhombohedral symmetry. The Na(1) site, fully occupied, is surrounded by six independent Na(2p) sites (p = 1 to 6) among which five are totally occupied (Na(21) \rightarrow Na(25)) and one is vacant (\square (26)).

The Na–Na distances in α -Na₃Al₂(AsO₄)₃ were calculated. In Table 9, they are compared with the corresponding values obtained from the Na coordinates of II-Na₃ $Fe_2(AsO_4)_3$ applied to the α -Na₃Al₂(AsO₄)₃ lattice. Important shifts of the three sodium sites Na(24), Na(21) and Na(22) toward the vacancy \square (26) are observed: 0.55, 0.25, and 0.12 Å, respectively. This suggests that the ordering is associated with a minimization of electrostatic repulsions between neighboring Na⁺ ions. A similar observation was recently reported for the ordered form α of $Na_7Fe_3(P_2O_7)_4$ (10). The other Na(2p)-Na(2p') distances are slightly increased and the Na(1)-Na(2p) distances remain quite unchanged, except the Na(1)-Na(24) one, for which the increase (+0.40 Å) seems to be a direct consequence of the displacement of the Na(24) site toward the \square (26) vacancy.

 AsO_4 tetrahedra. There are six independent tetrahedra (Table 7) and the mean As-O distance (1.690 Å) is very close to that observed in II-Na₃Fe₂(AsO₄)₃(1.688 Å).

 AlO_6 octahedra. (Table 8). The central octahedra $Al(11)O_6$ and $Al(14)O_6$, which belong to the two crystallographically independent clusters Al_4O_{18} , are slightly distorted. In the other octahedra, the Al-O distances range from 1.83(1) to 2.03(2) Å. The shortest ones correspond to the oxygen atoms O(24), O(12), and O(26) which surround the sodium vacancy \Box (26). In both Al_4O_{18} clusters, the Al-O distances are significantly shorter in the central

As(11)	O(41)	O(26)	O(11)	O(33)	As(14)	O(44)	O(23)	O(14)	O(36)
O(41)	1.63(1)	2.73(2)	2.76(2)	2.69(2)	O(44)	1.64(1)	2.80(2)	2.73(2)	2.82(2)
O(26)	111.6(6)	1.66(1)	2.68(2)	2.77(2)	O(23)	$11\overline{4.8(6)}$	1.68(1)	2.62(2)	2.82(2)
O(11)	113.2(6)	$10\overline{7.0(7)}$	1.67(1)	2.78(2)	O(14)	108.4(6)	101.0(6)	1.72(1)	2.83(2)
O(33)	106.0(7)	109.5(7)	109.6(6)	1.73(2)	O(36)	112.4(6)	110.4(7)	109.1(6)	1.76(2)
As(12)	O(42)	O(24)	O(12)	O(31)	As(15)	O(45)	O(21)	O(15)	O(34)
O(42)	1.66(1)	2.80(2)	2.83(2)	2.69(2)	O(45)	1.63(1)	2.76(2)	2.72(2)	2.76(2)
O(24)	112.8(6)	1.71(1)	2.79(2)	2.76(2)	O(21)	113.9(7)	1.66(1)	2.61(2)	2.76(2)
O(12)	114.6(8)	109.9(7)	1.71(1)	2.80(2)	O(15)	110.2(8)	103.7(7)	1.68(2)	2.80(2)
O(31)	104.2(7)	106.2(7)	108.6(7)	1.75(1)	O(34)	110.0(7)	109.2(8)	109.6(7)	1.74(1)
As(13)	O(43)	O(25)	O(13)	O(32)	As(16)	O(46)	O(22)	O(16)	O(35)
O(43)	1.65(1)	2.80(2)	2.81(2)	2.75(2)	O(46)	1.62(2)	2.74(2)	2.82(2)	2.69(2)
O(25)	$11\overline{2.3(7)}$	1.71(1)	2.63(2)	2.81(2)	O(22)	$11\overline{2.2(7)}$	1.68(2)	2.67(2)	2.81(2)
O(13)	115.0(7)	101.7(7)	1.68(2)	2.66(2)	O(16)	116.4(7)	104.3(7)	1.70(1)	2.79(2)
O(32)	108.4(7)	109.4(7)	109.9(7)	<u>1.73(2)</u>	O(35)	106.0(7)	109.9(7)	108.0(7)	1.75(2)

TABLE 7 Interatomic Distances (Å) and Angles (°) in AsO₄ Tetrahedra of α -Na₃Al₂(AsO₄)₃

Note. The As-O distances are underlined. The O-O distances are given above the diagonal, the O-As-O angles below.

octahedron than in the three others, as previously observed for the Fe(1)-O and Fe(2)-O distances in II-Na₃ Fe₂(AsO₄)₃.

Oxygen windows. The radii R of the oxygen windows which separate neighboring Na sites were systematically examined (Table 9). Three kinds of windows must be taken into account:

- (i) The windows which separate two neighboring Na(2p) positions belonging to different sextuplets. They are the widest ones: R = 2.38 Å for II-Na₃Fe₂(AsO₄)₃; the substitution of Al for Fe does not lead to significant variations in R, except for the O(16)O(14)O(26)O(24) window which separates Na(24) from the vacancy \square (26): R = 2.48 Å.
- (ii) Those that separate two Na(2p) neighboring positions belonging to the same sextuplet (R = 1.89 Å for II-Na₃Fe₂(AsO₄)₃). Three of them become very narrow

(R < 1.85 Å) and the two widest ones are located in the vicinity of the vacancy $\square(26)$.

(iii) Those which separate the Na(1) site from the six neighboring Na(2p) sites: similarly, the widest one (R = 1.97 Å) separates Na(1) from the vacancy.

DISCUSSION

The present crystal structure determination of the ordered form α of Na₃Al₂(AsO₄)₃ enabled us to have a better understanding of the interactions between the mobile ions along the two possible conduction pathways which were proposed for the disordered form β of II-Na₃ Fe₂(AsO₄)₃ (6).

The Na(24)- \square (26) sequence in Na₃Al₂(AsO₄)₃ is common to both models of conduction paths (a and b) and, because of its large size, the oxygen window which sepa-

FIG. 3. Partial representations of the structure of II-Na₃Fe₂(AsO₄)₃ showing the arrangement of FeO₆ octahedra (shaded) and AsO₄ tetrahedra. The numbers refer to oxygen atoms. Filled circles: Na(1). Open circles: Na(2). Left, projection along [001]. Right, projection along [010]. The a and b models of conduction paths (a in black, b with lozenges) and two triangular oxygen windows are represented.

TABLE 8 Interatomic Distances (Å) and Angles (°) in AlO₆ Octahedra of α -Na₃Al₂(AsO₄)₃

O(32) 1.87(2) 91(1) 93.4(6) 87.3(6) 92.9(6) 175.4(8) O(34) 1.84(2) 86(1) 94.4(6) 91.7(7) 95.0(6) 177.2(8) O(21) 1.89(2)	O(32) 2.68(3) 1.87(2) 87.3(6) 93.4(6) 175.4(8) 92.9(6) O(34) 2.51(3) 1.84(2) 91.7(7) 94.4(6) 177.2(8) 95.0(6)	O(33) 2.73(2) 2.59(2) 1.88(1) 179(1) 90.5(7) 88.7(7) O(36) 2.74(2) 2.68(2) 1.89(1) 172(1) 90.9(7)	O(33) 2.59(2) 2.73(2) 3.75(3) 1.88(1) 88.7(7) 90.5(7) O(36) 2.68(2) 2.74(2) 3.77(3) 1.89(1)	O(31) 2.75(3) 3.79(2) 2.69(2) 2.65(2) 1.92(2) 83(1) O(35) 2.76(3) 3.75(2) 2.52(2)	O(31) 3.79(2) 2.75(3) 2.65(2) 2.69(2) 2.54(3) 1.92(2) O(35) 3.75(2) 2.76(3)
91(1) 93.4(6) 87.3(6) 92.9(6) 175.4(8) O(34) 1.84(2) 86(1) 94.4(6) 91.7(7) 95.0(6) 177.2(8) O(21)	1.87(2) 87.3(6) 93.4(6) 175.4(8) 92.9(6) O(34) 2.51(3) 1.84(2) 91.7(7) 94.4(6) 177.2(8)	2.59(2) 1.88(1) 179(1) 90.5(7) 88.7(7) O(36) 2.74(2) 2.68(2) 1.89(1) 172(1) 90.9(7)	2.73(2) 3.75(3) 1.88(1) 88.7(7) 90.5(7) O(36) 2.68(2) 2.74(2) 3.77(3) 1.89(1)	3.79(2) 2.69(2) 2.65(2) 1.92(2) 83(1) O(35) 2.76(3) 3.75(2)	2.75(3) 2.65(2) 2.69(2) 2.54(3) 1.92(2) O(35) 3.75(2) 2.76(3)
93.4(6) 87.3(6) 92.9(6) 175.4(8) O(34) 1.84(2) 86(1) 94.4(6) 91.7(7) 95.0(6) 177.2(8) O(21)	87.3(6) 93.4(6) 175.4(8) 92.9(6) O(34) 2.51(3) 1.84(2) 91.7(7) 94.4(6) 177.2(8)	1.88(1) 179(1) 90.5(7) 88.7(7) O(36) 2.74(2) 2.68(2) 1.89(1) 172(1) 90.9(7)	3.75(3) 1.88(1) 88.7(7) 90.5(7) O(36) 2.68(2) 2.74(2) 3.77(3) 1.89(1)	2.69(2) 2.65(2) 1.92(2) 83(1) O(35) 2.76(3) 3.75(2)	2.65(2) 2.69(2) 2.54(3) 1.92(2) O(35) 3.75(2) 2.76(3)
87.3(6) 92.9(6) 175.4(8) O(34) 1.84(2) 86(1) 94.4(6) 91.7(7) 95.0(6) 177.2(8) O(21)	93.4(6) 175.4(8) 92.9(6) O(34) 2.51(3) 1.84(2) 91.7(7) 94.4(6) 177.2(8)	179(1) 90.5(7) 88.7(7) O(36) 2.74(2) 2.68(2) 1.89(1) 172(1) 90.9(7)	1.88(1) 88.7(7) 90.5(7) O(36) 2.68(2) 2.74(2) 3.77(3) 1.89(1)	2.65(2) 1.92(2) 83(1) O(35) 2.76(3) 3.75(2)	2.69(2) 2.54(3) 1.92(2) O(35) 3.75(2) 2.76(3)
92.9(6) 175.4(8) O(34) 1.84(2) 86(1) 94.4(6) 91.7(7) 95.0(6) 177.2(8) O(21)	175.4(8) 92.9(6) O(34) 2.51(3) 1.84(2) 91.7(7) 94.4(6) 177.2(8)	90.5(7) 88.7(7) O(36) 2.74(2) 2.68(2) 1.89(1) 172(1) 90.9(7)	88.7(7) 90.5(7) O(36) 2.68(2) 2.74(2) 3.77(3) 1.89(1)	1.92(2) 83(1) O(35) 2.76(3) 3.75(2)	2.54(3) 1.92(2) O(35) 3.75(2) 2.76(3)
175.4(8) O(34) 1.84(2) 86(1) 94.4(6) 91.7(7) 95.0(6) 177.2(8) O(21)	92.9(6) O(34) 2.51(3) 1.84(2) 91.7(7) 94.4(6) 177.2(8)	88.7(7) O(36) 2.74(2) 2.68(2) 1.89(1) 172(1) 90.9(7)	90.5(7) O(36) 2.68(2) 2.74(2) 3.77(3) 1.89(1)	83(1) O(35) 2.76(3) 3.75(2)	1.92(2) O(35) 3.75(2) 2.76(3)
O(34) 1.84(2) 86(1) 94.4(6) 91.7(7) 95.0(6) 177.2(8) O(21)	O(34) 2.51(3) 1.84(2) 91.7(7) 94.4(6) 177.2(8)	O(36) 2.74(2) 2.68(2) 1.89(1) 172(1) 90.9(7)	O(36) 2.68(2) 2.74(2) 3.77(3) 1.89(1)	O(35) 2.76(3) 3.75(2)	O(35) 3.75(2) 2.76(3)
1.84(2) 86(1) 94.4(6) 91.7(7) 95.0(6) 177.2(8) O(21)	2.51(3) 1.84(2) 91.7(7) 94.4(6) 177.2(8)	2.74(2) 2.68(2) 1.89(1) 172(1) 90.9(7)	2.68(2) 2.74(2) 3.77(3) 1.89(1)	2.76(3) 3.75(2)	3.75(2) 2.76(3)
86(1) 94.4(6) 91.7(7) 95.0(6) 177.2(8) O(21)	1.84(2) 91.7(7) 94.4(6) 177.2(8)	2.68(2) 1.89(1) 172(1) 90.9(7)	2.74(2) 3.77(3) 1.89(1)	3.75(2)	2.76(3)
94.4(6) 91.7(7) 95.0(6) 177.2(8) O(21)	91.7(7) 94.4(6) 177.2(8)	1.89(1) 172(1) 90.9(7)	3.77(3) 1.89(1)		
91.7(7) 95.0(6) 177.2(8) O(21)	94.4(6) 177.2(8)	17 <u>2(1)</u> 90.9(7)	1.89(1)	2.52(2)	
95.0(6) 177.2(8) O(21)	177.2(8)	90.9(7)			2.71(2)
177.2(8) O(21)				2.71(2)	2.52(2)
O(21)	95.0(6)		83.0(6)	1.91(2)	2.57(3)
		83.0(6)	90.9(7)	84(1)	1.91(2)
1.89(2)	O(21)	O(11)	O(11)	O(31)	O(31)
	2.81(2)	2.61(2)	2.92(2)	2.80(2)	3.86(2)
96(1)	1.89(2)	2.92(2)	2.61(2)	3.86(2)	2.80(2)
86.6(6)	$10\overline{0.4(6)}$	1.92(1)	3.82(3)	2.66(2)	2.68(2)
	86.6(6)	170(1)	1.92(1)	2.68(2)	2.66(2)
					2.54(3)
169.4(7)	92.5(6)	86.4(6)	85.5(6)	79(1)	1.99(2)
O(24)	O(24)	O(14)	O(14)	O(34)	O(34)
1.83(1)	2.91(2)	2.65(2)	2.79(2)	2.70(2)	3.81(2)
					2.70(2)
				2.68(2)	2.57(2)
					2.68(2)
					2.51(3)
164.7(7)	89.1(6)	82.2(6)	86.6(6)	77.8(9)	2.02(2)
O(12)	O(22)	O(23)	O(13)	O(32)	O(33)
		2.84(2)			2.62(2)
		2.90(2)			3.87(2)
					2.78(2)
					2.68(2)
					2.73(1)
84.6(7)	166.6(7)	90.8(6)	86.0(6)	$7\overline{9.8(6)}^{2}$	2.03(2)
O(26)	O(25)	O(16)	O(15)	O(36)	O(35)
					3.80(2)
					2.73(2)
					2.61(2)
					2.69(2)
	166.9(7)				2.52(2)
		83.9(7)	87.1(7)	79.1(61)	1.99(1)
	O(24) 1.83(1) 105(1) 91.3(6) 97.4(6) 89.1(6) 164.7(7) O(12) 1.86(2) 89.3(7) 99.4(7) 169.0(8) 86.6(7) 84.6(7) O(26) 1.83(1) 101.0(7) 90.7(6) 97.2(7) 91.0(6)	92.5(6) 169.4(7) 92.5(6) O(24) O(24) 1.83(1) 2.91(2) 105(1) 1.83(1) 91.3(6) 97.4(6) 97.4(6) 91.3(6) 89.1(6) 164.7(7) 164.7(7) 89.1(6) O(12) O(22) 1.86(2) 2.62(2) 89.3(7) 1.87(2) 99.4(7) 102.0(7) 169.0(8) 98.7(8) 86.6(7) 87.9(7) 84.6(7) O(26) O(25) 1.83(1) 2.87(2) 101.0(7) 1.89(2) 90.7(6) 98.2(8) 97.2(7) 87.4(7)	92.5(6) 169.4(7) 85.5(6) 169.4(7) 92.5(6) 86.4(6) O(24) O(14) 0(14) 1.83(1) 2.91(2) 2.65(2) 105(1) 1.83(1) 2.79(2) 91.3(6) 97.4(6) 1.89(1) 97.4(6) 91.3(6) 166(1) 89.1(6) 164.7(7) 86.6(6) 164.7(7) 89.1(6) 82.2(6) O(12) O(22) O(23) 1.86(2) 2.62(2) 2.84(2) 89.3(7) 1.87(2) 2.90(2) 99.4(7) 102.0(7) 1.87(1) 169.0(8) 98.7(8) 86.3(6) 86.6(7) 87.9(7) 168.4(6) 84.6(7) 166.6(7) 90.8(6) O(26) O(25) O(16) 1.83(1) 2.87(2) 2.66(2) 101.0(7) 1.89(2) 2.87(2) 90.7(6) 98.2(8) 1.91(2) 97.2(7) 87.4(7) 169.4(7) 91.0(6) 166.9(7) 86.8(6)	92.5(6) 169.4(7) 85.5(6) 86.4(6) 85.5(6) 169.4(7) 92.5(6) 86.4(6) 85.5(6) O(24) O(14) O(14) O(14) 1.83(1) 2.91(2) 2.65(2) 2.79(2) 105(1) 1.83(1) 2.79(2) 2.65(2) 91.3(6) 97.4(6) 1.89(1) 3.74(3) 97.4(6) 91.3(6) 166(1) 1.89(1) 89.1(6) 164.7(7) 86.6(6) 82.2(6) 164.7(7) 89.1(6) 82.2(6) 86.6(6) O(12) O(22) O(23) O(13) 1.86(2) 2.62(2) 2.84(2) 3.74(2) 89.3(7) 1.87(2) 2.90(2) 2.86(2) 99.4(7) 102.0(7) 1.87(1) 2.58(2) 169.0(8) 98.7(8) 86.3(6) 1.90(2) 86.6(7) 87.9(7) 168.4(6) 86.2(7) 84.6(7) 166.6(7) 90.8(6) 86.0(6) O(26) O(25) O(16) O(15) 1.83(1) 2.87(2) 2.66(2) 2.80(2) 101.0(7) <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Note. Al-O distances are underlined. O-O distances are given above the diagonal, O-Al-O angles below.

rates the Na(24) site from the \square (26) vacancy is an easy passageway. The Na(24) ion is displaced of 0.55 Å toward the vacancy and displays the highest temperature factor $(B_{eq} = 2.39(26) \text{ Å}^2)$.

Along the *b*-pathway, both sodium sites Na(21) and Na(22) are displaced toward the vacancy \square (26) while, along the *a*-pathway, the Na(1)- \square (26) distance is slightly increased. This tends to indicate that the mobile ions are more likely to diffuse along the *b* model rather than the *a* model. The comparison of the temperature factors of the Na(1) and Na(2) sites in II-Na₃Fe₂(AsO₄)₃ (2.04 and 3.98 Å², respectively) favors this conclusion.

The phase transition from the disordered form β to the room-temperature form α of Na₃Al₂(AsO₄)₃ was previously shown (2) to be accompanied by an important decrease in the ionic conductivity (Fig. 1). In order to interpret this, we have examined how the b network of diffusion pathways is modified by the $\beta \rightarrow \alpha$ transition. One can reasonably suppose that the more narrow an oxygen window, the more difficult for a sodium ion to pass through it. If we consider the diffusion of a sodium ion to be improbable through the windows with $R \le 1.84$ Å and eliminate these windows from the path-network, it appears that the diffusion through the remaining win-

TABLE 9
Na-Na Distances and Radii R of the Oxygen Windows (Å) in α-Na ₃ Al ₂ (AsO ₄) ₃

	Distar	nces		
Na sites	(a)	(b)	Oxygen windows	R (Å)
	Na(2p)-Na(2p) pairs belongi	ng to different sextuplets	
Na(22)-Na(22)	3.09(2)	3.04	O(12)-O(12)-O(22)-O(22)	2.40
Na(25)-Na(25)	3.22(2)	3.04	O(15)-O(15)-O(25)-O(25)	2.35
Na(21)-Na(23)	3.25(1)	3.05	O(11)-O(13)-O(21)-O(23)	2.37
Na(24)–□(26)	2.50(1)	3.05	O(16)-O(14)-O(26)-O(24)	2.48
	Na(2p)-Na(2p) pairs belong	ing to the same sextuplet	
Na(21)-Na(25)	3.49(1)	3.43	O(13)-O(46)-O(41)	1.838
Na(25)-Na(23)	3.51(1)	3.45	O(15)-O(41)-O(45)	1.841
Na(23)-Na(24)	3.83(2)	3.40	O(11)-O(45)-O(43)	1.902
Na(24)-Na(22)	3.47(1)	3.43	O(16)-O(43)-O(44)	1.772
Na(22)-□(26)	3.33	3.45	O(12)-O(44)-O(42)	1.913
□(26)–Na(21)	3.15	3.40	O(14)-O(42)-O(46)	1.916
	•	Na(1)-Na(2	p) pairs	
Na(1)-Na(25)	3.03(1)	3.05	O(46)-O(41)-O(45)	1.820
Na(1)-Na(23)	3.11(1)	3.03	O(41)-O(45)-O(43)	1.893
Na(1)-Na(24)	3.47(2)	3.07	O(45)-O(43)-O(44)	1.862
Na(1)-Na(22)	2.96(1)	3.05	O(43)-O(44)-O(42)	1.880
Na(1)-□(26)	3.15	3.03	O(44)-O(42)-O(46)	1.975
Na(1)-Na(21)	2.97(2)	3.07	O(42)-O(46)-O(41)	1.848

Note. (a) calculated from the coordinates refined in the space group C2; (b) calculated from the coordinates of the Na sites in II-Na₃Fe₂(AsO₄)₃.

FIG. 4. Arrangement of the sodium sites in the structure of α -Na₃ Al₂(AsO₄)₃ (space-group C2). Projection along $[001]_h = [10\overline{1}]_m$. The sites are represented by graphical symbols and the corresponding numbers are given at the top left of the figure. Distances between the sodium sites are given in Å. The lines drawn between the sites represent the conduction paths according to the b model proposed for the β form. The average z_h coordinates of the sodium sextuplets are about 0, -1/6, and +1/6, for the central sextuplet, the three ones with dotted lines and the three others, respectively.

dows $(R \ge 1.90 \text{ Å})$, see Table 9), is restricted along pathways with $[001]_m$ as the general direction (12). The loss of symmetry associated with the $\beta \to \alpha$ transition would therefore be accompanied by a loss of the three-dimensional character of the conduction.

REFERENCES

- 1. H. Schwarz and L. Schmidt, Z. Anorg, Allg. Chem. 387, 31 (1972).
- F. d'Yvoire, M. Pintard-Scrépel, and E. Bretey, Solid State Ionics 18-19, 502 (1986).
- F. d'Yvoire, M. Pintard-Scrépel, E. Bretey, and M. de la Rochère, Solid State Ionics, 9-10, 851 (1983).
- M. de la Rochère, F. d'Yvoire, G. Collin, R. Comès, and J.-P. Boilot, Solid State Ionics 9-10, 825 (1983).
- C. Delmas, J.-C. Viala, R. Olazcuaga, G. Le Flem, P. Hagenmuller, F. Cherkaoui, and R. Brochu, Solid State Ionics 3-4, 209 (1981).
- F. d'Yvoire, E. Bretey, and G. Collin, Solid State Ionics 28-30, 1259 (1988).
- 7. F. d'Yvoire, Bull. Soc. Chim. 1237 (1962).
- 8. A. Modaressi, A. Courtois, R. Gerardin, B. Malaman, and C. Gleitzer, J. Solid State Chem. 40, 301 (1981).
- B. Malaman, M. Ijjaali, R. Gerardin, G. Venturini, and C. Gleitzer, Eur. J. Solid State Inorg. Chem. 29, 1269 (1992).
- C. Masquelier, F. d'Yvoire, and N. Rodier, J. Solid State Chem. 95, 156 (1991).
- 11. "International Tables for X-Ray Crystallography," Vol. IV, Kynoch, Birmingham, 1974.
- C. Masquelier, F. d'Yvoire, and G. Collin, "Solid State Ioníc Materials" (B. V. R. Chowdari, M. Yahaya, I. B. Talib, and M. M. Salleh, Eds.), p. 167. World Scientific, Singapore, 1994.